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GLACIAL-EUSTATIC CONTROL OF
COALBED METHANE RESERVOIR DISTRIBUTION

(POTTSVILLE FORMATION; LOWER PENNSYLVANIAN)
IN THE BLACK WARRIOR BASIN OF ALABAMA

Jack C. Pashin and Dorothy E. Raymond
Geological Survey of Alabama, P.O. Box 869999, Tuscaloosa, AL 35486

ABSTRACT

Subsurface maps and stratigraphic cross sections of Pennsylvanian-age strata in the Black Warrior
basin provide new evidence for the origin of late Paleozoic depositional cycles and the stratigraphic
controls on the distribution of coalbed methane reservoirs. Coal beds are concentrated in a series of 4th-
order parasequences, or cyclothems, which are bounded by regionally extensive marine flooding
surfaces. Each cyclothem represents about 0.4 my, which is equivalent to the long orbital eccentricity
period. The cyclothems studied each contain three subordinate marine flooding surfaces defining 5th-
order parasequences, which apparently are products of relative sea-level changes associated with the
short eccentricity period (0.1 my). The first 5th-order parasequence in each cyclothem tends to be
dominated by progradational deltaic deposits. The second and third 5th-order parasequences contain a
higher proportion of aggradational deposits and include incised valley fills as deep as 100 ft overlain by
widespread reservoir coal beds as thick as 10 ft. The fourth parasequence commonly contains
transgressive tidal deposits. Although cyclothems provide an obvious basis for stratigraphic subdivision of
Pennsylvanian strata in the Black Warrior basin, internal facies relationships suggest that major sea-level
change was most effective in the short eccentricity band, as was the case during Pleistocene glaciation.
Accordingly, rising base level in the second and third 5th-order parasequences of most cyclothems set the
stage for widespread peat accumulation and preservation of the thickest and most widespread coalbed
methane reservoirs in the Black Warrior basin.

INTRODUCTION

The geometry and distribution of coalbed methane reservoirs varies significantly among sedimentary
basins. In Cretaceous and Tertiary strata of the western USA, for example, coalbed methane is produced
from a single, thick (~10-100 ft) coal bed or from multiple thick seams within a single coal zone [e.g., 1, 2].
In Pennsylvanian strata of the eastern USA, by comparison, reservoir coal beds are relatively thin (~1-12
ft) and are in multiple zones distributed through a thick stratigraphic section [3-6]. In the upper Pottsville
Formation of the Black Warrior basin, coal beds are in places dispersed through more than 4,000 ft of
section, and gas has been produced from more than 20 coal beds in some wells (figs. 1, 2).

Distribution of Pennsylvanian coal beds through a thick stratigraphic section is largely the product of
repetitive marine-terrestrial depositional cyclicity, and the origin of this cyclicity has been debated since
the historic publications on cyclothems by Weller [7] and Wanless and Shepard [8]. Recent debate has
focused on the tectonic and paleoclimatic implications of this cyclicity [e.g., 9-11], which is thought to be a
product of basin subsidence associated with assembly of the Pangaean supercontinent, as well as
eustasy driven by Gondwanan glaciation [12-14]. In the Black Warrior basin, close well spacing and a
thick stratigraphic section facilitate investigation of stratal geometry and patterns of coal distribution in
multiple depositional cycles [15-18]. This paper presents detailed subsurface maps and stratigraphic
cross sections that provide new evidence for the origin of Pennsylvanian cycles and the geologic controls
on the distribution of coalbed methane reservoirs.
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Figure 1. Index map showing locations of coalbed methane fields in the Black Warrior basin, well control,
and lines of cross section used in this study.

Methods

More than 5,000 gamma-density logs and long cores were described and correlated to identify and
classify stratigraphic markers, such as marine flooding surfaces; to identify and define sedimentary
structures and lithofacies; and to determine the geometry and extent of sandstone bodies and reservoir
coal beds (fig. 1). A series of stratigraphic cross sections was then constructed showing the stratigraphic
architecture of the target coal zones (plates 1-3). Selected cross sections are presented in this paper, and
a complete set is in Pashin et al. [19]. The cross sections depict gamma-density logs, major depositional
cycles and marine flooding surfaces, subordinate parasequences, coal beds, and major sandstone units.
Coal beds and associated organic-rich shale beds were classified according to thickness and density-log
signature into primary resource targets, secondary resource targets, and thin marker beds. Primary
resource targets are coal beds thicker than 2 ft and typically have a blocky log signature, whereas
secondary resource targets are between 1 and 2 ft thick and have a pronounced spike signature (< 1.5
g/cc). Thin marker beds include coal and organic shale markers that are less than 1 ft thick and have a
subdued spike signature (> 1.5 g/cc). After the coal beds were correlated, parasequences subordinate to
the major depositional cycles were defined by correlating regionally extensive shale and coal markers.

Stratigraphic and well-location data from all wells were compiled into a spreadsheet to facilitate
subsurface mapping. Well locations were computed from surveyed line calls using the Wellbase module
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Figure 2. Core log and geophysical well log of the upper Pottsville Formation in Cedar Cove Field
showing coal zones and 4th-order maximum flooding surfaces bounding cyclothems [after 18].
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of the Geographix Exploration System. Stratigraphic data include the depth of each cycle boundary and
net coal thickness in each coal zone. Coal thickness was determined using high-resolution density logs,
which typically have a scale of 1 inch equals 25 ft. Coal beds thinner than 1 ft generally are not logged
accurately, are seldom completed for gas production, and were thus excluded from the thickness
determination. Maps of coal thickness were gridded and contoured using a minimum curvature algorithm
in the Isomap module of Geographix. Net coal isolith maps were made for each target coal zone, and a
net coal isolith map was made for the Black Creek through Brookwood coal zones.

Background

Coalbed methane reserves in the Black Warrior basin are concentrated in the upper Pottsville
Formation (Lower Pennsylvanian; Langsettian), which comprises nine major coal zones and is dominated
by siliciclastic rocks (fig. 2). More than 5,000 coalbed methane wells have been drilled, and more than
4,000 wells are currently producing. Cumulative gas production now exceeds 1.5 Tcf, and annual
production has exceeded 110 Bcf since the mid 1990s. Coalbed methane resources are estimated to be
between 10 and 20 Tcf [20, 21], and reserves are estimated to be between 2.5 and 4.6 Tcf [4, 22, 23].

The Black Warrior basin is a late Paleozoic foreland basin that formed at the juncture of the
Appalachian and Ouachita orogenic belts [24-26]. The coalbed methane fields are in the eastern part of
the basin adjacent to the frontal structures of the Appalachian orogen (fig. 1). Carboniferous strata in the
Black Warrior basin thicken southwest, indicating that subsidence was dominated by thrust and sediment
loading in the Ouachita orogen [27]. In the coalbed methane fields, however, upper Pottsville strata
thicken southeastward, indicating superposition of an Appalachian flexural moat on the larger Ouachita
foreland basin [15, 27, 28] (fig. 3). The area containing the thickest section in the coalbed methane fields
is called the Moundville-Cedar Cove depocenter [19]. Net completable coal thickness in the upper
Pottsville ranges from less than 10 ft in the northwestern part of the coalbed methane fairway to more
than 70 ft in parts of the Moundville-Cedar Cove depocenter (fig. 4).

Stratigraphic grouping of Pottsville coal beds was observed by McCalley [29], and intercalated marine
and terrestrial facies were recognized by Butts [30]. From the 1960s through the 1980s, the Alabama
Pottsville formed a basis for facies models of Appalachian coal-bearing strata [25, 26, 31, 32]. During
extensive natural gas exploration, regionally extensive depositional cycles were identified and mapped [3,
15, 28]. Recent workers [e.g., 18, 33, 34] have interpreted the upper Pottsville cycles as flooding-surface-
bounded depositional units, or parasequences [see 35, 36]. The base of each parasequence is marked
by a condensed section with abundant marine fossils. Above the condensed section is a thick interval
(100-300 ft) of marine shale that coarsens upward into fluvial-deltaic sandstone. At the top of each
parasequence is a lithologically heterogeneous coal zone that accumulated in a spectrum of marginal
marine and terrestrial environments. Pashin [15, 16, 34] interpreted these parasequences to have been
deposited at a frequency no greater than 0.4 my, which is equivalent to the Milankovitch long eccentricity
period that is thought to have driven the formation of Pennsylvanian cyclothems [11, 13]. Accordingly, the
major Pottsville parasequences analyzed in this study can be classified as cyclothems, or 4th-order
parasequences.

POTTSVILLE PARASEQUENCES

Pottsville cyclothems are readily recognized in gamma-density logs (fig. 2; plates 1-3). Shale has
radioactivity higher than 100 gammas, whereas sandstone has radioactivity lower than 100 gammas. The
maximum flooding surface bounding each cyclothem is typically marked by elevated radioactivity at the
bottom of a thick shale interval, and these surfaces can be traced throughout the study area. The basal
shale units have a serrate log pattern and coarsen upward into sandstone, which is typical of
progradational deposits. Framework sandstone has a blocky or fining-upward log signature, which is
characteristic of aggradational deposits. Coal beds and associated organic-rich shale units are identified
by low density, and coal beds thicker than 1 ft have low radioactivity similar to sandstone.

The cyclothems contain subordinate progradational intervals (fig. 2; plates 1-3). These intervals are
best developed in the Gillespy through Gwin coal zones, and some minor flooding surfaces at the tops of
these intervals can be correlated across the study area (plates 2, 3). These surfaces define the
boundaries of high-frequency parasequences. Each cyclothem studied comprises four subordinate
parasequences, suggesting sedimentation in the short eccentricity Milankovitch band (~0.1 my). Hence,
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Figure 3. Isopach map showing thickness of the upper Pottsville Formation from the top of the Black
Creek coal zone to the top of the Gwin coal zone.

the subordinate depositional units are interpreted as 5th-order parasequences. These parasequences are
color-coded blue, green, yellow, and brown on the basis of their position within each cyclothem (plates 1-
3). The progradational signature of the subordinate parasequences is most readily apparent in the blue
and green color-coded intervals. In the green through brown parasequences, however, the progradational
signature is commonly obscured or supplanted by aggradational sandstone and shale units. The tops of
widespread coal beds commonly mark or correlate with marine flooding surfaces [36, 37] (plates 1-3), and
flooding surfaces above regionally extensive coal beds in the study area were verified with core and
outcrop data. The 5th-order parasequences contain three dominant lithofacies: (1) progradational shale
and sandstone, (2) aggradational sandstone and shale, and (3) coal.

Progradational Shale and Sandstone

Progradational shale is very dark gray to dark medium gray and is silty or sandy. Marine fossils are
most abundant in the lower parts of the shale units and include brachiopods, molluscs, echinoderms, and
solitary corals [30, 38]. The shale typically contains horizontal burrows. Sandstone forms laminae to thick
beds and is medium gray to light gray. The thickness, frequency, and grain size of these beds increases
upsection. Sandstone beds in the lower parts of the progradational units are typically graded, and higher
in section, graded sandstone beds can be traced laterally into clinoform foreset beds [39]. Near the tops
of these intervals, crossbeds and scour fills are common. In the brown parasequences, graded bedding is
absent, and marine body fossils are rare. These intervals are dominated by wavy-, flaser-, and lenticular-
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Figure 4. Net coal isolith map of the upper Pottsville Formation.

bedded shale and sandstone containing diverse trace fossils and are truncated by regionally extensive
ravinements that underlie the condensed section of the next cyclothem [18, 40].

The deltaic character of the progradational shale and sandstone units has long been recognized [16,
18, 31, 33, 39]. In the blue and green parasequences, the basal parts of the progradational shale units
are typical of prodeltaic deposits, whereas graded sandstone beds are typical of distal delta front
deposits. Clinoform foreset bedding is common in distal to medial distributary mouth bars, whereas
crossbeds and scour fills are characteristic of proximal mouth bars. Significantly, 5th-order flooding
surfaces define northwest-dipping clinoforms in the lower parts of the Gillespy through Gwin coal zones
(plates 2, 3). Wavy-, flaser-, and lenticular-bedded shale and sandstone in the brown parasequences, by
contrast, are characteristic of tidal deposits [41, 42]. Pashin [17, 18] interpreted these strata as
retrograding delta-destructive and estuarine facies that formed during the early stages of 4th-order marine
transgressions. The ravinements capping the brown parasequences have been interpreted as
transgressive surfaces that formed by shoreface erosion during regional inundation [18, 40].

Aggradational Sandstone and Shale

Aggradational sandstone bodies are abundant in the middle and upper parts of each cyclothem, and
the thickness and continuity of these bodies is variable (fig. 2; plates 1-3). The sandstone is
compositionally immature, is fine- to coarse-grained, and locally includes conglomerate. Isolith maps
indicate that sandstone is thickest in the Moundville-Cedar Cove depocenter [3, 15]. The sandstone units
have sharp bases, fine upward, and have gradational tops. Sedimentary structures include crossbeds,
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current-ripple cross laminae, horizontal laminae, scour-and-fill structures, and lateral accretion surfaces
[3, 42, 43]. Biogenic structures range from plant fossils to invertebrate traces and, rarely, calcareous
shells. Single-story sandstone bodies are most common in the blue and brown parasequences, and
multistory sandstone bodies are most common in the green and yellow parasequences.

Shale is commonly interbedded with sandstone, and bedding styles range from pinstripe bedding to
wavy, flaser, and lenticular bedding; rooted mudstone also is common. In places, thick, graded sandstone
beds are common in the shale units, as are muddy channel fills. Fossils in the aggradational shale units
range from erect plant assemblages to the burrows and trackways of invertebrates and vertebrates, as
well as sparse brachiopod and mollusc shells [38].

The sandstone bodies have been interpreted to represent a spectrum of contributive, transitive, and
distributive fluvial systems, as well as tidal channel systems [17, 18, 31, 43, 44]. Concentration of
compositionally immature sandstone in the Moundville-Cedar Cove depocenter suggests a source in the
Appalachian orogen [3, 15]. Some of the sandstone units in the coalbed methane fields, such as in the
green parasequence of the Gwin coal zone (plate 3, C-C’), appear to have cut as deeply as 100 ft into the
underlying shale units and can thus be interpreted as incised valley fills. The associated shale units
appear to have been deposited in a broad array of interchannel environments and include overbank,
crevasse-splay, bayfill, backswamp, and tidal-flat deposits [31, 39, 42, 43].

Coal

Pottsville coal is bright-banded and composed of vitrinite (70-95%) with lesser inertinite (5-30%) and
liptinite (0-8%) [45]. Ash content is typically 5 to 19% and is dominated by detrital clay and quartz, and
total sulfur content is typically 0.8 to 3.0% [19]. Net coal thickness in the upper Pottsville increases from
less than 10 ft in the western coalbed methane fields to more than 70 ft in parts of the Moundville-Cedar
Cove depocenter (fig. 4). In the Mary Lee and Pratt coal zones, net coal thickness exceeds 10 ft in
several areas along the southeast margin of the Black Warrior basin (figs. 3, 5). In the Gwin and Utley
zones, net coal thickness exceeds 5 ft mainly in the Moundville-Cedar Cove depocenter (figs. 3, 6).

Coal beds are most numerous in the Moundville-Cedar Cove depocenter (plates 1-3); they are rare in
the blue parasequences and are most common in the green and yellow parasequences. Coal beds are
sparse in brown parasequences, save for those above the Pratt coal bed (plate 3). Most upper Pottsville
coal beds can be correlated for large distances (plates 1-3). Several thin marker beds and secondary
resource beds appear to be truncated by aggradational sandstone bodies, and many appear to be in
facies relationship with sandstone. In contrast, major resource beds and the correlative secondary
resource beds and thin markers can be traced across large parts of the study area. Most of these beds
have been named (see plates 1-3) and are the principal mining and degasification targets in the Black
Warrior basin. Most named beds are at or are a short distance below flooding surfaces defining the
boundaries of 5th-order parasequences. Care must be taken, however, when associating coal beds with
flooding surfaces. For example, it is tempting to place a parasequence boundary at the top of the upper
Cobb bed based on log signature and the thickness of adjacent siliciclastic strata (plate 3). However, no
correlative flooding surface can be identified in cross-section C-C’.

The vast majority of the coal beds are geometrically simple; that is, a single bed can be traced for
large distances without splitting (plates 1-3). Where multiple beds merge, as is the case in the Mary Lee,
Blue Creek, and Gwin beds of Big Sandy Creek and Moundville fields (plate 1, A-A’; plate 3, A-A’),
individual coal beds tend to retain identity in density logs, and high-resolution well logs can be used for
bench-scale correlation. A prominent example of bed splitting is in the Pratt seam, where a thick bed with
multiple benches splits basinward toward a large multistory sandstone body (plate 2, C-C’). Channel-fill
coal bodies are in the Blue Creek coal of Oak Grove Field (plate 1, A-A’). The channels are up to 60 ft
deep, truncate Jagger coal, and form a dendritic network [17]. The coal thickens to more than 9 ft in the
channels and is a primary target of longwall coal mining and mine-related degasification activities.

The Alabama Pottsville is part of the Euramerican coal belt, which formed as a widespread system of
equatorial peat swamps during Pennsylvanian time [46]. High detrital ash content indicates that peat
accumulated mainly in low-lying swamps, although some low-ash coal has been attributed to doming [47].
Sulfur content is higher than 2% in coal with marine roof strata [48, 49], and the broad range of sulfur
content in the Pottsville reflects preservation of coal below marine through terrestrial roof facies.

The variable thickness and extent of Pottsville coal beds (plates 1-3; figs. 2-6) further points to
diverse origins. Many of the thin, discontinuous beds arguably are the products of localized swamps that
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Figure 5. Net coal isolith maps of the Mary Lee and Pratt coal zones.
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Figure 6. Net coal isolith maps of the Gwin and Utley coal zones.
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were prone to erosion or pass laterally into contemporaneous siliciclastic sediment. At the other extreme,
regionally extensive coal beds provide evidence for widespread paludification of the coastal plain [see
50]. Regional aggradation appears to have facilitated paludification. For example, Pashin [17] interpreted
the channel fill coal of the Blue Creek bed (plate 1, A-A’) to indicate infilling of an aggraded, dendritic
paleovalley system with peat. Other widespread coal beds, like the Cobb and Gwin beds, accumulated
after channel belts had aggraded and filled completely with siliciclastic sediment (plate 3). Interestingly,
the Mary Lee-Blue Creek channel-fill coal is in the interior of a 5th-order parasequence (plate 1), whereas
most other regionally extensive coal beds are at or a short distance below parasequence-bounding
flooding surfaces (plates 1-3). As such, aggradation of sandy channel systems and accumulation of the
Gwin bed was a prelude to a widespread marine flooding event. By contrast, progressive splitting of Pratt
coal and interfingering with contemporaneous siliciclastic sediment (plate 2, C-C’) suggests that some
major swamp systems persisted through 5th-order flooding events.

PALEOCLIMATIC AND TECTONIC INTERPRETATIONS

Pennsylvanian cyclothems are commonly attributed to 4th-order changes of relative sea level in the
long eccentricity band, although the mechanisms driving this cyclicity remain controversial [9, 11]. Berger
and Loutre [51] showed that the intensity of insolation varied in concert with long eccentricity during
Pleistocene glaciation (fig. 7A). However, Rial [52] demonstrated that glacial ice volume was regulated by
short eccentricity and that long eccentricity modulated higher Milankovitch frequencies (fig. 7B).
Regardless of the cause, 4th-order depositional cycles provide an obvious basis for stratigraphic
subdivision of the upper Pottsville (fig. 2; plates 1-3).

The classic cyclothems of the North American midcontinent are much thinner than those in the Black
Warrior basin, and correlative strata in the Appalachian basin contain major stratigraphic discontinuities
[53]. Thus, interpretations of cyclicity in Pennsylvanian strata have been hampered by low stratigraphic
resolution. The exceptional thickness of upper Pottsville cyclothems, coupled with close well spacing in
the coalbed methane fields, facilitates the recognition of 5th-order parasequences (plates 1-3; fig. 8) and
thus provides new insight into the depositional, climatic, and tectonic processes that operated during
Pennsylvanian time. Taken together, the blue through green parasequences typically define
progradational parasequence sets  (fig. 8). The brown parasequences can represent continued
progradational stacking, as is the case in the Gillespy and Pratt coal zones (plate 2). However, abundant
marginal-marine deposits and limited sandstone and coal resources indicate retrogradation, as is the
case in the brown parasequences of the Mary Lee and Gwin coal zones (figs. 2, 8; plates 1, 3).

The blue parasequences record major episodes of deltaic progradation and basin filling and thus
constitute 4th-order highstand deposits (plates 1-3). Although the green and yellow parasequences can
also contain progradational deltaic deposits, especially in the northwestern parts of the study area, these
parasequences contain complex multistory sandstone bodies and some incised valley fills, suggesting
that lowstand surfaces of erosion are present and that fluvial sedimentation had some sensitivity to base-
level changes in the short eccentricity band. However, complex facies relationships within the 5th-order
parasequences make lowstand surfaces difficult to trace. The incised valley fills in the green
parasequence of the Gwin coal zone (plate 3, C-C’) suggest that sea-level drops were about 100 ft, which
is consistent with other estimates of glacial eustasy during the Early Pennsylvanian [54]. Although the
stratigraphic expression of the brown parasequences is variable, retrogradation in some cyclothems
indicates deposition during 4th-order marine transgressions.

Coal beds appear to be the products of interwoven autogenic and allogenic processes. The high
abundance of coal beds in the Moundville-Cedar Cove depocenter reflects increased tectonic subsidence
and persistence of terrestrial sedimentation in areas proximal to the sediment source. Within the
depocenter coal beds, such as those above the Pratt seam (plate 3), can be too numerous to be
explained solely by high-frequency Milankovitch processes, specifically obliquity (~40 ky) and precession
(~20 ky). Autogenic processes that may have operated include channel avulsion and autocompaction of
peat, which can cause rapid shifts in the locations of flood basins and swamps. Although more coal beds
have been completed in the depocenter than in any other part of the Black Warrior basin, increased coal
resources do not necessarily translate to large gas reserves or better well performance [3, 19].

Total effective subsidence rates in the Moundville-Cedar Cove depocenter during upper Pottsville
deposition at times exceeded 1,500 ft/my [34, 55], so sediment compaction combined with tectonic
processes driven by thrust and sediment loading may have also played an important role in the
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regulated glacial eustasy and the development of cyclothems during the Pennsylvanian.

preservation of coal and the intervening siliciclastic rocks. Gastaldo et al. [56] argued that catastrophic
subsidence events explain the preservation of standing forests in which erect plants extend upward
through more than 20 ft of aggradational shale. Rapid subsidence events also may help explain the
alternation of geometrically simple coal beds with siliciclastic strata in the interiors of many 5th-order
parasequences. Furthermore, rapid subsidence apparently kept upper Pottsville fluvial systems close
enough to grade to favor the development of single-story and poorly confined multistory sandstone bodies
over well-confined paleovalley fills in most parasequences.

Although many processes affected peat accumulation, base level changes appear to have played a
fundamental role in the formation of the thickest and most widespread coal beds, which are the principal
targets for gas production, as well as underground and surface mining. The common association between
widespread coal beds and 5th-order flooding events suggests that regional aggradation driven by high-
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frequency glacial eustasy helped curb siliciclastic sediment flux and subdue topography, thereby laying
the groundwork for the growth of regionally extensive peat swamps. Although aggradation prior to marine
flooding favored the development of major swamps, the thick valley-fill coal of the Mary Lee-Blue Creek
subzone (plate 1) suggests that subsidence coupled with the earliest stages of eustatic sea-level rise
could raise water tables enough to promote the formation of a major resource bed in the interior of a 5th-
order parasequence.

SUMMARY AND CONCLUSIONS

Coalbed methane reserves in the upper Pottsville Formation are distributed among multiple 4th-order
depositional cycles, or cyclothems, that in places span more than 4,000 ft of section. Upper Pottsville
strata thicken southeastward into a prominent foreland flexure adjacent to the Appalachian orogen. Coal
beds and resources are most abundant in this flexure, and isolith maps indicate that the impact of tectonic
subsidence on coal thickness patterns increased through time during Pottsville sedimentation.

Each cyclothem studied comprises four 5th-order parasequences, suggesting control of sedimentation
by glacial eustasy. The first of these parasequences is dominated by deltaic deposits and contains limited
coal resources. The second and third parasequences contain thick, aggradational sandstone, including
incised valley fills. The thickest and most widespread coal beds are within these parasequences, and
together, the first three parasequences exhibit progradational stacking. The character of the fourth
parasequence is variable, indicating continued progradation or retrogradation. This parasequence
commonly contains transgressive tidal facies and generally lacks major coal resources.

Most upper Pottsville coal beds are geometrically simple; that is, individual beds can be traced
without splitting. However, some beds include channel-fill coal bodies or progressive bed splits adjacent
to contemporaneous siliciclastic facies. Regionally extensive coal beds are associated with 5th-order
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base-level rises. These base-level rises facilitated aggradation of fluvial systems, smoothing of
topography, and reduction of sediment flux, thereby setting the stage for paludification of the coastal plain
and accumulation of the most important reservoir coal beds and mining targets in the basin.
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